## **Bluetooth 4.0: Low Energy**

Joe Decuir Standards Architect, CSR Technology Councilor, Bluetooth Architecture Review Board IEEE Region 6 Northwest Area chair



## Agenda

Wireless Applications Perspective

How do wireless devices spend energy?

- What is 'classic' Bluetooth?
- What is Bluetooth Low Energy?
- How do the components work?
- How low is the energy?

Perspective: how does ZigBee & 802.15.4 work?

What is Bluetooth Low Energy good for?

Where can we learn more?



## Short range wireless application areas

|                      | Voice  | Data | Audio | Video | State |
|----------------------|--------|------|-------|-------|-------|
| Bluetooth ACL / HS   | X      | Y    | Y     | X     | X     |
| Bluetooth SCO/eSCO   | Y      | X    | X     | X     | X     |
| Bluetooth low energy | X      | X    | X     | X     | Y     |
| Wi-Fi                | (VoIP) | Y    | Y     | Y     | X     |
| Wi-Fi Direct         | Y      | Y    | Y     | X     | X     |
| ZigBee               | X      | X    | X     | X     | Y     |
| ANT                  | X      | X    | X     | X     | Y     |

State = low bandwidth, low latency data

EΕ

## How do wireless devices spend power?

- Duty Cycle: how often they are on
- The wireless world has put a lot of effort into reducing this
- Protocol efficiency: what do they do when on?
- Different MACs are tuned for different types of applications
- TX power: how much power they transmit
- And how efficient the transmit amplifier is
- How long they have to transmit when they are on
- Data rate helps here look at energy per bit
- How much energy the signal processing consumes
- This is driven by chip silicon process if the DSP dominates
- This is driven TX power if the RF dominates



## **Example transmit power & efficiency comparisons** High rate: 802.11n (single antenna) vs UWB, short range

- In 90nm, an 802.11n chip might spend ~200mW in DSP, but 500mW in the TX amplifier (mostly because they are about 10% efficient on OFDM carriers) to deliver 108 Mbps instantaneous rate, maybe 40 Mbps above the MAC
- Raw energy efficiency: 108Mbps/700mW = 154Mbps/W
- In 90nm, a WiMedia 1.2 chip might spend ~400mw in DSP, but only 20mW in the TX amplifier (because the output power is <1mW) to deliver 480 Mbps instantaneous rate, maybe 320 Mbps above the MAC
- Raw energy efficiency: 480Mbps/420mW = 1143Mbps/W
- Low rate: 802.15.4 (ISM) vs Bluetooth (ISM, LE or EDR)
- For both, TX power dominates: ~10mW RF, <5mW DSP, etc
- For IEEE 802.15.4, 250kbps/15mW = **17Mbps/W**
- For Bluetooth LE, 1Mbps/15mW = 67Mbps/W
- For Bluetooth EDR, 3Mbps/15mW = 200Mbps/W



### **Applications dominate usage**

#### The 802.11 MAC is a contention-based system

- If the AP is mains-powered, efficiency matters at the STA (station)
- If the medium isn't congested, the STA does not have to spend much time or power with the radio on, contending for use of the medium.
- If the medium is congested, power consumption rises fast, because the STA has to listen a long time to detect its turn to transmit or receive.

#### The Classic Bluetooth MAC is isochronous

- This fits the phone-to-headset application for two-way voice traffic
- It is efficient for this: both radios know when they need to be on, and off
- Bluetooth Low Energy is asynchronous
- A device (server) will advertize for attention only if it needs it
- A host (client) will listen often enough to hear advertizing
- If both devices have a pre-agreed schedule, the combined usage can be tiny
  - It costs some energy to maintain a clock



#### What is 'classic' Bluetooth?

## Bluetooth is a set of specifications for common short range wireless applications

They are written, tested & maintained by the Bluetooth SIG (~16,000 members)

#### The specifications include:

- Core components radios, protocols (we own everything, so we can optimize)
- Profiles (aka applications)
- AND: we rigorously validate the specs before we Adopt them, like 3GPP

#### The 'classic' Bluetooth radio:

- 2.4 GHz ISM band,1 M symbols/s, GFSK, 4PSK or 8PSK
- 1 MHz channel spacing, with frequency hopping
- Adaptive Frequency Hopping, for co-existence with Wi-Fi, etc
- Up to 10mW for house-scale range; up to 100 mW to go farther

## Bluetooth 3.0 Generic Alternate MAC/PHY (AMP) can use additional radios: IEEE 802.11n



## What is traditional Bluetooth used for?

Top uses by volume (>2B total/year):

- Mobile phones
- Voice headsets and "Car kits"
- Stereo headsets and speakers
- PCs and tablets
- Wireless controllers for video games
- M2M applications credit card readers, industrial automation

Although Bluetooth is commonly used for human I/O, it already has a good penetration into high reliability M2M applications.

## How much energy does traditional Bluetooth use?

Traditional Bluetooth is *connection oriented*.

- When a device is connected, a link is maintained, even if there is no data flowing.
- Sniff modes allow devices to sleep, reducing power consumption to give months of battery life.
- Pairs of devices schedule when to wake up and check in
- Peak transmit current is typically around 25mA.
- Even though it is low power compared to things like 802.11n (e.g. Wi-Fi or Wi-Fi direct) it still consumes to much power for coin cells and energy harvesting applications
- ZigBee is better for <u>state</u> applications than *traditional* Bluetooth



## What is Bluetooth Low Energy?

- A new radio, new protocol stack and a new profile architecture.
- It's designed to run from coin cells and support an Apps Store model
- The Bluetooth SIG calls this "Smart Ready"
- It is a radio standard for a new decade, enabling the **Internet of Things.** Features:
- Mostly new PHY; some parts derived from the Basic Rate (BR) radio
- New advertising mechanism, for ease of discovery & connection
- Asynchronous connection-less MAC: used for low latency, fast transactions (e.g. 3ms from start to finish)
- New Generic Attribute Profile to simplify devices and the software that uses them.
- Asynchronous Client / Server architecture

Designed to be LOWEST cost and EASY to implement

Vision: that Bluetooth LE will be to Smartphones what USB has been to desktop PCs: universal wireless connectivity



#### **Bluetooth low energy factsheet**

Range: ~ 150 meters open field Output Power: ~ 10mW (10dBm) Max Current: ~ 15mA Latency: 3 ms Topology: Star Connections: > 2 billion Modulation: GFSK @ 2.4 GHz Robustness: Adaptive Frequency Hopping, 24 bit CRC Security: 128bit AES CCM Sleep current ~  $1\mu$ A Modes: Broadcast, Connection, Event Data Models Reads, Writes

Specification or Implementation specific



## Bluetooth low energy factsheet #2 Did you notice something missing? Data Throughput

# For Bluetooth low energy, data throughput is not a meaningful parameter. It does not support streaming. It has a data rate of 1 Mbps, but is not optimised for file transfer.

•It is designed for sending small chunks of data (exposing state).



#### **Designed for exposing state**



- It's good at small, discrete data transfers.
- Data can triggered by local events.
- Data can be read at any time by a client.
- Interface model is very simple (GATT)



#### It's about the Internet of Things

### Things have data & Web Services want this data

*Bluetooth* low energy provides the technology to connect these two.



## Bluetooth Low Energy needs generic gateways

- Devices that support *Bluetooth* low energy Gateway functionality need to provide a transparent pipe from a device to an IP address.
- Middleware at the IP address can access the device directly as if it were a collector talking to it locally.
- The Gateway device plays no part other than in acting as a pipe.
- Today, there is no accepted standard for generic gateways, for Bluetooth or for Zigbee – and we all need one.



IEEE Sections Congress 2011 • 19-22 August



#### What are the pieces?





#### How does it work: new radio

- 2.4 GHz ISM band
- 1 Mbps GFSK

Larger modulation index than classic Bluetooth (better range)
 40 Channels on 2 MHz spacing:





## How does it work: new Link Layer

#### Low Complexity

- 1 packet format
- 2 Protocol Data Unit types Advertising or Data Channel
- 7 Advertising Protocol Data Unit Types
- 7 Link Layer Control Procedures

#### **Useful Features**

Adaptive Frequency Hopping Low Power Acknowledgement Very Fast Connections



### How does it work: advertising



#### Devices can advertise for a variety of reasons:

- To broadcast promiscuously
- To transmit signed data to a previously bonded device
- To advertise their presence to a device wanting to connect
- To reconnect asynchronously due to a local event



## How does it work: 4 active states



## How it works: peripheral states & central states



## How does it work: data transactions



#### Once a connection is made:

- Master informs slave of hopping sequence and when to wake
- All subsequent transactions are performed in the 37 data channels
- Transactions can be encrypted
- Both devices can go into deep sleep between transactions.



#### Let's add it up, for a minimal transaction

|        | Time<br>(us)     | Master Tx                      | Radio Active<br>(us) | Slave Tx                                      |
|--------|------------------|--------------------------------|----------------------|-----------------------------------------------|
|        | 0                |                                | 176                  | ADV_DIRECT_IND                                |
|        | 326              | CONNECT_REQ                    | 352                  |                                               |
|        | 1928             | Empty Packet                   | 80                   |                                               |
|        | 2158             |                                | 144                  | Attribute Protocol<br>Handle Value Indication |
|        | 2452             | Empty Packet (Acknowledgement) | 80                   |                                               |
|        | 2682             |                                | 96                   | LL_TERMINATE_IND                              |
|        | 2928             | Empty Packet (Acknowledgement) | 80                   |                                               |
| ADV_DI | CONI<br>RECT_IND | NECT_REQ En                    | npty Packet          | Empty Packet Empty Packet                     |
|        |                  |                                |                      |                                               |

### How low can the energy get?

#### Try calculating energy per transaction

- Assume an upper bound of 3 ms per minimal transaction
- Est TX power is 15mW (mostly TX power amp for 40 nm chips).
- For 1.5v battery, this is 10ma. 0.015 W x .003 sec = <u>45 micro</u> <u>Joule</u>

#### How long could a sensor last on a battery?

- An example battery: Lenmar WC357, 1.55v, 180mAh, \$2.
- 180mAh/10ma = 18 hours = 64,800 seconds = 21.6M transactions
- Suppose this sensor sends a report every minute = 1440/day
- For just the BT LE transactions, this is 15,000 days, or >40 yr
- This far exceeds the life of the battery and/or the product
- In fact, the communication cost will be only part.
- This sensor could run on scavenged power, e.g. ambient light.



### Your mileage may vary

The previous slide calculated 45 uJ for the minimum transaction

- This number is an upper bound because it budgets 15mW for the entire 3 ms time, although the radio time is much smaller
- OTOH, more complex transactions may need more radio traffic
- The low duty cycle on both sides depends on having a clock that gives each device an approximate time to wake up and transact business
- This can be as simple as a 32kHz oscillator, like those in watches
- The client/scanner/listener needs to wake up earlier and listen longer to accommodate clock frequency skew
- This is a common feature in CSR and some competing chips
- The sensor itself draws power. That energy might exceed the power spent on the wireless link.
- In practice, the radio power might be a minority of the power budget



## How does it work: Attribute Protocol

**Clients and Servers** 

- Servers expose Attributes
- Clients use them

16 bit address space of handles – address within a device Each attribute has a Universal Unique ID (UUID) – what it is?

- 16-bit if standardized by the Bluetooth SIG
- 128-bit if invented by the manufacturer
- Note: that manufacturers can add value without waiting for the SIG

The protocol supports a handful of actions:

- Clients: Discover or Find, Read, Write, Confirm an Indication
- Servers: respond to Client actions, Notification and Indication



## Simple ATT transaction: read something



## How does it work: Generic Attribute Profile

Simple Servers

Those servers provide attributes:

- Characteristics, and descriptors for those characteristics
- Services: which can include characteristics and/or other services

Expose the state of the server.

Allows choice of security level: 128 bit AES CCM optional

Use the Attribute Protocol for transport

Defines Data Formats:

- Low Energy encapsulates all of the protocols and formats into the core. This makes profile development much faster and easier.
- □ The format is easy to encode in XML.



## Busy GATT procedure: interrogate a server



#### **Extension:** gateways

- Any system that can connect to Low Energy devices AND to a wide area network can serve as a gateway:
- Your home PC should see devices around your home
- Your smart phone should see all the devices around you
- The simplicity of GATT servers should make it easy to represent those devices over the web.
- Problem: no consensus yet on how these work
- Candidate solution: Constrained Application Protocol
- Reference: draft-ietf-core-coap-09
- Only 4 operations: Confirmable (CON), Non-confirmable (NON), Acknowledge (ACK) and Reset (RST)
- This reads like a constrained subset of HTTP (Hyper Text Transfer Protocol, used everywhere on the Web)



## What is Bluetooth Low Energy Good for?

Connecting the things we carry with us:

- Watches: remote display from other devices
- Tags: locate objects or keep track of them (e.g. warning if you walk away)
- Health & fitness sensors (e.g. pedometer in your shoes)
- Body sensors (e.g. blood pressure, pulse rate, blood glucose, etc)

#### Accessing the things around us:

- Fobs: use proximity as a security/access control means
- Home and office automation

#### Low duty cycle M2M communication:

Sensors and controls in homes, offices and factories

#### Communication within a system

Car to car wheels/tires

Connecting anything that has intrinsic data to the Internet



### **Opportunities**

New classes of gadgets

- Around a person
- Around a house
- In your car
- New applications on PCs and smart phones
- Use those devices
- New web services
- Anything can connect to the Web
- New Social Applications
- Your beer glass can talk to your Facebook page



## The billion unit markets for wireless:

Phone accessories (internet / apps centric devices) Smart Energy (meters & displays). Home Automation (white goods and HVAC) Health, Wellness, Sports & Fitness Assisted Living Animal Tagging (food assurance) Intelligent Transport Systems M2M (Internet connected devices) TAM\*

- > 10 billion
- ~ 1 billion
- > 5 billion
- > 10 billion
- > 5 billion
- ~ 3 billion
- > 1 billion
- > 10 billion

\* TAM – Total Addressable Market



## What are the USE CASES planned for BT 4.0?

- Proximity
- Time
- Emergency
- Network availability
- Personal User Interface
- Simple remote control
- Browse over Bluetooth
- Temperature Sensor
- Humidity Sensor

- HVAC
- Generic I/O (automation)
- Battery status
- Heart rate monitor
- Physical activity monitor
- Blood glucose monitor
- Cycling sensors
- Pulse Oximeter
- Health Thermometer

#### Most of these were standardized in the last 18 months

IEEE Sections Congress 2011 - 19-22 August



#### **Example use: proximity**

#### It can enable proximity detection

- I'm in the car
- I'm in the office
- I'm in the meeting room
- I'm in the movie theater
- It can enable presence detection
- Turn the lights on when I walk around the house
- Automatically locks the door when I leave home
- Turns the alarm off if I'm already awake
- Keep track of things
- My kid is running around in public
- Where are my keys, my cell phone, my wallet ...





### **Proximity demonstration**





#### **Proximity cartoon**



#### IEEE Sections Congress 2011 • 19-22 August



#### Everyday objects can become sensors



#### ...and monitor things unobtrusively



IEEE Sections Congress 2011 • 19-22 August

## How to build on Bluetooth Low Energy

#### Applications:

- Host applications that use nearby Low Energy devices
- Web applications that use remote Low Energy devices

#### Devices:

- Use new Profiles from the SIG (see above lists)
- Define proprietary profiles:
  - Define the attributes of the device
    - 1. Services
    - 2. Characteristics
    - 3. Descriptors
    - 4. Behavior
  - Define proprietary 16-byte UUIDs for these attributes



### **Predictions**

- ZigBee will gain some traction where connectivity to PCs or mobile phones isn't necessary
- This requires something to provide user control
- This requires something to provide the network gateway
- Bluetooth Low Energy is becoming a free add-on to mobile phones, PCs and some other devices that use classic Bluetooth now – they will switch to dual mode devices
- The prediction is 370 million mobile phones will be sold with BT LE this year
- The Bluetooth ecosystem will define two tools:
- APIs for use in PC host OS and in Smartphone OS (mostly done)
- Internet gateways (under study)

The Bluetooth ecosystem will define even more Profiles

Entrepreneurs will define proprietary profiles



#### Calls to Action

#### Learn about Bluetooth Low Energy

- Ask questions, today or later (see contact info) See resources on a later slide
- Think about how to use it to satisfy market needs
- The list of use cases above is just a start

#### Find partners to deliver value

There were dozens of companies who did IOP testing to validate the specification

CSR is one of at least a half dozen chip makers



#### **Questions?**



© Thaves/Dist. by NEA, Inc.

IEEE Sections Congress 2011 - 19-22 August



42

#### **Resources:**

SIG site: <u>http://www.bluetooth.com/lowenergy</u>

The Bluetooth 4.0 specification:

http://www.bluetooth.com/Specification%20Documents/Core\_V40.zip

Bluetooth Low Energy Training from 2010 All Hands Meeting:

https://www.bluetooth.org/DocMan/handlers/DownloadDoc.ashx?doc\_id=2284 41

Articles on Bluetooth Low Energy: <u>www.nickhunn.com</u>

Book: Essentials of Short Range Wireless, Hunn

Book: forthcoming book on Bluetooth Low Energy by Robin Heydon.

<u>ZigBee Technology: www.zigbee.org</u>. See Jan 2008 release. Article: "ZigBee Technology: Wireless Control that Simply works" <u>http://intranet.da-iict.org/~ranjan/sn/papers/Zigbee.pdf</u> Book: ZigBee Wireless Networking, by Gislasan Book: ZigBee Wireless Networks and Transceivers, by Farahani IEEE 802.15: <u>http://ieee802.org/15/; https://mentor.ieee.org/802.15</u>



### My contact information

#### Personal:

Joe Decuir

Issaquah, WA

IEEE: jdecuir@ieee.org

- Chair, Region 6 North West Area (Oregon, Washington, Alaska)
- Work: <a>joe.decuir@csr.com</a>

**Standards Architect** 

CSR Technology



## Backup #1: Zigbee



## **Competitive perspective: how does ZigBee work?**

You all have choices. The most significant of several in this space are ANT, Z-wave and the ZigBee Alliance.

ZigBee is the older and better established of the three.

- ZigBee is based on the IEEE 802.15.4 MAC and PHY Technical Description:
- PHY: 802.15.4
- MAC: 802.15.4
- Middle layers: NWK
- Upper layers: applications

Administrative comparisons:

- Market presence
- Testing
- IP sharing



#### The ZigBee stack





### 802.15.4 PHY

#### IEEE 802.15.4 defines several PHY options:

- 2450 MHz QPSK PHY
- 868/915 MHz: BPSK PHY; ASK PHY; O-QPSK PHY
- Note: 802.15.4a adds several more, including DS-UWB

#### ZigBee uses the ISM band (2450 MHz) PHY

- Worldwide spectrum (same as Bluetooth, Bluetooth LE, 802.11g, etc)
- Up to 250 kbps

#### 802.15.4 ISM modulation

- 4 bits/symbol; 32 chip PN sequence/symbol; 2M chips/s => 250kbps
- Chips are QPSK on a selected carrier (next slide)



#### Frequency usage for 802.15.4 / ZigBee



Note: RF4CE only uses channels 15, 20 & 25



#### 802.15.4 MAC

Versatile:

- Supports multiple connection models:
  - peer-to-peer
  - Piconet
  - mesh
- Supports asynchronous and isochronous uses:
  - contention-free in a managed superframe
  - contention within a superframe

#### Frame types:

- Beacons, used by coordinators if Superframes used
- Data frames and acknowledgement frame
- MAC command frame



## **ZigBee NWK layer functions**

- 1. Starting a network
- 2. Join and leave a network
- 3. Configuring a new device: configure the stack for operation as required.
- 4. Addressing: The ZigBee coordinator assigns addresses to devices joining the network.
- 5. Synchronization within a network: synchronize with another device either through tracking beacons or by polling.
- 6. Security: apply security to outgoing frames and removing security to terminating frames
- Routing: route frames to their intended destinations, particularly through a mesh of bi-lateral connections.



Basic topology of 802.15.4





#### ZigBee: Cluster tree network





#### ZigBee PRO: mesh





## ZigBee Applications Layer (APL)

Each device NWK layer has two Service Access Points:

- NLME-SAP (control plane) to access the Device Object
- NLDE-SAP (data plane) to access the Applications
- Each APS (Applications Support Sublayer) can handle up to 240 distinct Application Objects (APSDE-SAP)
- Application Objects are defined by the ZigBee Alliance
- 16-bit Device Description code space
- Each Applications Object defines several descriptors:
- Node, power, simple [,complex] [,user]
- Each simple descriptor supports one or more (16-bit) clusters of commands and attributes:
- Attribute identifiers, commands



#### Example ZigBee application: RF4CE



- •Targeted at Remote Control
- •Uses three channels only 15, 20 & 25.
- •Some market penetration with Set Top Boxes



A different use of 802.15.4: 6LoWPAN



An initiative to "squeeze" IPv6 addressing into reasonably sized wireless packets.
Being adopted for ZigBee's Smart Energy Profile 2.0



## ZigBee & Bluetooth Low Energy

#### Business comparison:

- **ZigBee is older**, and evolved. The most recent is 2008.
- ZigBee has press and SDO mindshare, but still not a lot of shipments yet.
- Market barrier: connectivity ZigBee is not in PCs or mobile phones.

#### Technical comparison:

- ZigBee is low power; Bluetooth LE is even lower. Detailed analysis depends on specific applications and design detail, not to mention chip geometry.
- ZigBee stack is light, but mesh networking costs complexity and power; the Bluetooth LE/GATT stack is even simpler. Staying on to listen within a mesh costs power.

#### Going forward:

- ZigBee has a lead on specifying applications and in marketing presence.
- Bluetooth low energy has even better low power technology
- Bluetooth has a commanding presence in several large existing markets: mobile phones, automobiles, consumer electronics, PC industry.

Upgrading "classic Bluetooth" (2.1, 3.0) to "dual mode" (4.0) devices will bootstrap this market very quickly.



### Bluetooth SIG and ZigBee Alliance + IEEE P802.15

The IEEE 802.15.4 committees & the ZigBee Alliance collaborate

- P802.15.4 writes the PHY and MAC specs no testing or IP sharing
- The ZigBee Alliance writes all the higher layers.
- The ZigBee Alliance does limited testing and IP sharing
- The Bluetooth SIG does all the essential administrative and technical work:
- Determine market needs
- Develop the entire stack of technical specifications
- Perform design Q/A on all the stack specification components by IOP testing, before they are Adopted
- Perform Qualification Q/A testing on the entire stack in each product – earning RANDZ IP rights



## Backup #2: phone and web app visuals



#### Everyday objects can become sensors



#### ...and monitor things unobtrusively



IEEE Sections Congress 2011 • 19-22 August

### Connection works: start with a phone







#### Devices ship with a web address...

www.patientslikeme.com





### ...using a generic app on your phone...



|                                                          | 00 ° 11 @ 88          |  |  |  |  |
|----------------------------------------------------------|-----------------------|--|--|--|--|
| Bluetooth Gateway                                        |                       |  |  |  |  |
|                                                          | Pedometer             |  |  |  |  |
|                                                          |                       |  |  |  |  |
| Selec                                                    | t Website to connect: |  |  |  |  |
| 0                                                        | RevolutionHealth      |  |  |  |  |
| 0                                                        | GoogleHealth          |  |  |  |  |
| 0                                                        | NHS HealthSpace       |  |  |  |  |
| ۲                                                        | MobileLifestyle       |  |  |  |  |
| Note: Sending data to a website may incur network costs. |                       |  |  |  |  |
| Conn                                                     | ect Exit              |  |  |  |  |



#### which connects them to the web app...





## then automatically sends your data...





### Or, tell the phone what they can do...



Pedometer Acme Model XYZ Steps per Minute Total Steps Calories Used Find me an APP...



#### and the phone gets a tailored set of Apps



Easy to buy = More revenue

